Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effect of Fuel Cetane Number on the Performance of Catalyst-Heating Operation in a Medium-duty Diesel Engine

2022-03-29
2022-01-0483
To comply with increasingly stringent pollutant emissions regulations, diesel engine operation in a catalyst-heating mode is critical to achieve rapid light-off of exhaust aftertreatment catalysts during the first minutes of cold starting. Current approaches to catalyst-heating operation typically involve one or more late post injections to retard combustion phasing and increase exhaust temperatures. The ability to retard post injection timing(s) while maintaining acceptable pollutant emissions levels is pivotal for improved catalyst-heating calibrations. Higher fuel cetane number has been reported to enable later post injections with increased exhaust heat and decreased pollutant emissions, but the mechanism is not well understood. The purpose of this experimental and numerical simulation study is to provide further insight into the ways in which fuel cetane number affects combustion and pollutant formation in a medium-duty diesel engine.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

A Multi-Dimensional Benefit Assessment of Automated Mobility Platforms (AMP) for Large Facilities: Mobility, Energy, Equity, and Facility Management & Design

2023-09-05
2023-01-1512
The goal of the automated mobility platforms (AMPs) initiative is to raise the bar of service regarding equity and sustainability for public mobility systems that are crucial to large facilities, and doing so using electrified, energy efficient technology. Using airports as an example, the rapid growth in air travel demand has led to facility expansions and congested terminals, which directly impacts equity (e.g., increased challenges for Passengers with Reduced Mobility [PRMs]) and sustainability—both of which are important metrics often overlooked during the engineering design process.
Technical Paper

Analysis and Testing of Optimal Power Control Strategy for NASA Moon Base Interconnected DC Microgrid System

2023-09-05
2023-01-1508
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

Impact of Hydrogen on the Ignition and Combustion Behavior Diesel Sprays in a Dual Fuel, Diesel-Piloted, Premixed Hydrogen Engine

2023-08-28
2023-24-0061
Renewably sourced hydrogen is seen as promising sustainable carbon-free alternative to conventional fossil fuels for use in hard to decarbonize sectors. As the hydrogen supply builds up, dual-fuel hydrogen-diesel engines have a particular advantage of fuel flexibility as they can operate only on diesel fuel in case of supply shortages, in addition to the simplicity of engine modification. The dual-fuel compression ignition strategy initiates combustion of hydrogen using short pilot-injections of diesel fuel into the combustion chamber. In the context of such engine combustion process, the impact of hydrogen addition on the ignition and combustion behavior of a pilot diesel-spray is investigated in a heavy-duty, single-cylinder, optical engine. To this end, the spatial and temporal evolution of two-stage autoignition of a diesel-fuel surrogate, n-heptane, injected into a premixed charge of hydrogen and air is studied using optical diagnostics.
Technical Paper

Investigating molecular decomposition via high-speed laser-induced Rayleigh scattering

2023-09-29
2023-32-0118
Molecular decomposition is a key chemical process in combustion systems. Particularly, the spatio-temporal information related to a fuel’s molecular breakdown is of high-importance regarding the development of combustion models and more specifically about chemical kinetic mechanisms. Most experiments rely on a variety of ultraviolet or infrared techniques to monitor the fuel breakdown process in 0-D type experiments such as those performed in shock-tubes or rapid compression machines. While the information provided by these experiments is necessary to develop and adjust kinetic mechanisms, they fail to provide the necessary data for applied combustion models to be predictive regarding the fuel’s molecular breakdown. In this work, we investigated the molecular decomposition of a fuel by applying high-speed planar laser Rayleigh scattering (PLRS).
Book

Lithium Ion Batteries in Electric Drive Vehicles

2016-05-16
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.
Technical Paper

Implementing Ordinary Differential Equation Solvers in Rust Programming Language for Modeling Vehicle Powertrain Systems

2024-04-09
2024-01-2148
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling.
Technical Paper

Analytical Calculation of the Critical Speed of a Driveshaft

2005-05-16
2005-01-2310
Determination of the critical speed of a driveshaft is critical for development and validation of its design for use in a vehicle because of its destructive effects. Typical calculations to determine critical speed are either over simplistic and not very accurate or very complicated requiring CAE software and capabilities. An analytical five-section non-prismatic beam model was developed to fill in this gap. The model was developed to compute the critical speed in a worksheet and proven to be as or more accurate as utilizing FEA methods. The model worksheet calculates the critical speed for one-piece conventional driveshafts and adapted for Visteon's Slip-In-Tube (SIT) driveshafts.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Thermal Evaluation of Toyota Prius Battery Pack

2002-06-03
2002-01-1962
As part of a U.S. Department of Energy supported study, the National Renewable Energy Laboratory has benchmarked a Toyota Prius hybrid electric vehicle from three aspects: system analysis, auxiliary loads, and battery pack thermal performance. This paper focuses on the testing of the battery back out of the vehicle. More recent in-vehicle dynamometer tests have confirmed these out-of-vehicle tests. Our purpose was to understand how the batteries were packaged and performed from a thermal perspective. The Prius NiMH battery pack was tested at various temperatures (0°C, 25°C, and 40°C) and under driving cycles (HWFET, FTP, and US06). The airflow through the pack was also analyzed. Overall, we found that the U.S. Prius battery pack thermal management system incorporates interesting features and performs well under tested conditions.
Journal Article

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

2023-04-11
2023-01-0240
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane.
X